Основные логические операции (and, or, xor, not). Логические операторы VBA Как работает исключающее

Операция исключающее ИЛИ (неравнозначность, сложение по модулю два) обозначается символом и отличается от логического ИЛИ только приA=1 и B=1.

Таким образом, неравнозначность двух высказываний Х1 и Х2 называют такое высказывание Y, которое истинно тогда и только тогда, когда одно из этих высказываний истинно, а другое ложно.

Определение данной операции может быть записано в виде таблицы истинности (таблица 6):

Таблица 6 – Таблица истинности операции «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Как видно из таблицы 6, логика работы элемента соответствует его названию.

Это тот же элемент «ИЛИ» с одним небольшим отличием. Если значение на обоих входах равно логической единице, то на выходе элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», в отличие от элемента «ИЛИ», не единица, а ноль.

Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ» фактически сравнивает на совпадение два двоичных разряда.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет своё название и обозначение (таблица 7).

Таблица 7 – Основные логические операции

Обозначение

операции

Читается

Название операции

Альтернативные обозначения

Отрицание (инверсия)

Черта сверху

Конъюнкция (логическое умножение)

Дизъюнкция (логическое сложение)

Если … то

Импликация

Тогда и только тогда

Эквиваленция

Либо … либо

ИСКЛЮЧАЮЩЕЕ ИЛИ (сложение по модулю 2)

  1. Порядок выполнения логических операций в сложном логическом выражении

Система логических операций инверсии, конъюнкции, дизъюнкции позволяет построить сколь угодно сложное логическое выражение.

При вычислении значения логического выражения принят определённый порядок выполнения логических операций.

1. Инверсия.

2. Конъюнкция.

3. Дизъюнкция.

4. Импликация.

5. Эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

  1. Логические выражения и таблицы истинности

    1. Логические выражения

Каждое составное высказывание можно выразить в виде формулы (логического выражения), в которую входят логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание «(2·2=5 или 2∙2=4) и (2∙2≠5 или 2∙2 4)».

Проанализируем составное высказывание. Оно содержит два простых высказывания:

А = «2 2=5»-ложно (0),

В = «2 2=4»-истинно (1).

Тогда составное высказывание можно записать в следующей форме:

«(А или В ) и (Ā или В )».

Теперь необходимо записать высказывание в форме логического выражения с учётом последовательности выполнения логических операций. При выполнении логических операций определён следующий порядок их выполнения:

инверсия, конъюнкция, дизъюнкция.

Для изменения указанного порядка могут использоваться скобки:

F = (A v В ) & (Ā v В ).

Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

Подставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции:

F = (A v В) & (Ā v В) = (0 v 1) & (1 v 0) = 1 & 1 = 1.

      Таблицы истинности

Таблицы, в которых логические операции отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний, называются таблицами истинности.

Простые высказывания обозначаются переменными (например, A и B).

При построении таблиц истинности целесообразно руководствоваться определённой последовательностью действий:

    необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно п, то:

количество строк = 2 n .

В нашем случае логическая функция

имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4;

    необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.

В нашем случае количество переменных равно двум: А и В, а количество логических операций - пяти (таблица 8), то есть количество столбцов таблицы истинности равно семи;

    необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных;

    необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности.

Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

Таблица 8 – Таблица истинности логической функции

Теги: Си битовые операции, побитовые операции, побитовое сложение, побитовое умножение, битовый сдвиг влево, битовый сдвиг вправо

Введение

Я зык Си иногда называют макроассемблером за его тягу к железу. Если не использовать оптимизацию, можно даже примерно оценить, в какие конструкции на ассемблере преобразуется код программы. Простота и минимализм языка (простоту языка не путать с простотой программирования на языке) привели к тому, что на многих платформах си остаётся единственным высокоуровневым языком программирования. Без обзора побитовых операций, конечно, изучения языка было бы неполным.

Побитовые операции, как понятно из названия, позволяют оперировать непосредственно с битами. Большое количество примеров использования побитовых операций можно найти, например, в книге Генри Уоррена «Алгоритмические трюки для программистов». Здесь мы рассмотрим только сами операции и примитивные алгоритмы.

Побитовые И, ИЛИ, НЕ, исключающее ИЛИ

Н апомню для начала, что логические операции И, ИЛИ, исключающее ИЛИ и НЕ могут быть описаны с помощью таблиц истинности

Логический оператор НЕ
X NOT X
0 1
1 0

В побитовых (bit-wise) операциях значение бита, равное 1, рассматривается как логическая истина, а 0 как ложь. Побитовое И (оператор &) берёт два числа и логически умножает соответствующие биты. Например, если логически умножить 3 на 8, то получим 0

Char a = 3; char b = 8; char c = a & b; printf("%d", c);

Так как в двоичном виде 3 в виде однобайтного целого представляет собой

Первый бит переменной c равен логическому произведению первого бита числа a и первого бита числа b. И так для каждого бита.

00000011
00001000
↓↓↓↓↓↓↓↓
00000000

Соответственно, побитовое произведение чисел 31 и 17 даст 17, так как 31 это 00011111 , а 17 это 00010001

00011111
00010001
↓↓↓↓↓↓↓↓
00010001

Побитовое произведение чисел 35 и 15 равно 3.

00100011
00001111
↓↓↓↓↓↓↓↓
00000011

Аналогично работает операция побитового ИЛИ (оператор |), за исключением того, что она логически суммирует соответствующие биты чисел без переноса.

Например,

Char a = 15; char b = 11; char c = a | b; printf("%d", c);

выведет 15, так как 15 это 00001111 , а 11 это 00001011

00001111
00001011
↓↓↓↓↓↓↓↓
00001111

Побитовое ИЛИ для чисел 33 и 11 вернёт 43, так как 33 это 00100001 , а 11 это 00001011

00100001
00001011
↓↓↓↓↓↓↓↓
00101011

Побитовое отрицание (оператор ~) работает не для отдельного бита, а для всего числа целиком. Оператор инверсии меняет ложь на истину, а истину на ложь, для каждого бита. Например,

Char a = 65; char b = ~a; printf("%d", b);

Выведет -66, так как 65 это 01000001 , а инверсия даст 10111110

что равно -66. Кстати, вот алгоритм для того, чтобы сделать число отрицательным: для нахождение дополнительного кода числа его надо инвертировать и прибавить к нему единицу.

Char a = 107; char b = ~a + 1; printf("a = %d, -a = %d", a, b);

Исключающее ИЛИ (оператор ^) применяет побитово операцию XOR. Например, для чисел

Char a = 12; char b = 85; char c = a ^ b; printf("%d", c);

будет выведено 89, так как a равно 00001100 , а b равно 01010101 . В итоге получим 01011001

Иногда логические операторы && и || путают с операторами & и |. Такие ошибки могут существовать в коде достаточно долго, потому что такой код в ряде случаев будет работать. Например, для чисел 1 и 0. Но так как в си истиной является любое ненулевое значение, то побитовое умножение чисел 3 и 4 вернёт 0, хотя логическое умножение должно вернуть истину.

Int a = 3; int b = 4; printf("a & b = %d\n", a & b); //выведет 0 printf("a && b = %d\n", a && b);//выведет не 0 (конкретнее, 1)

Операции побитового сдвига

О пераций сдвига две – битовый сдвиг влево (оператор <<) и битовый сдвиг вправо (оператор >>). Битовый сдвиг вправо сдвигает биты числа вправо, дописывая слева нули. Битовый сдвиг влево делает противоположное: сдвигает биты влево, дописывая справа нули. Вышедшие за пределы числа биты отбрасываются.

Например, сдвиг числа 5 влево на 2 позиции

00000101 << 2 == 00010100

Сдвиг числа 19 вправо на 3 позиции

00010011 >> 3 == 00000010

Независимо от архитектуры (big-endian, или little-endian, или middle-endian) числа в двоичном виде представляются слева направо, от более значащего бита к менее значащему. Побитовый сдвиг принимает два операнда – число, над которым необходимо произвести сдвиг, и число бит, на которое необходимо произвести сдвиг.

Int a = 12; printf("%d << 1 == %d\n", a, a << 1); printf("%d << 2 == %d\n", a, a << 2); printf("%d >> 1 == %d\n", a, a >> 1); printf("%d >> 2 == %d\n", a, a >> 2);

Так как сдвиг вправо (>>) дописывает слева нули, то для целых чисел операция равносильна целочисленному делению пополам, а сдвиг влево умножению на 2. Произвести битовый сдвиг для числа с плавающей точкой без явного приведения типа нельзя. Это вызвано тем, что для си не определено представление числа с плавающей точкой. Однако можно переместить число типа float в int, затем сдвинуть и вернуть обратно

Float b = 10.0f; float c = (float) (*((unsigned int*)&b) >> 2); printf("%.3f >> 2 = %.3f", b, c);

Но мы, конечно же, получим не 5.0f, а совершенно другое число.

Особенностью операторов сдвига является то, что они могут по-разному вести себя с числами со знаком и без знака, в зависимости от компилятора. Действительно, отрицательное число обычно содержит один бит знака. Когда мы будем производить сдвиг влево, он может пропасть, число станет положительным. Однако, компилятор может сделать так, что сдвиг останется знакопостоянным и будет проходить по другим правилам. То же самое и для сдвига вправо.

Unsigned int ua = 12; signed int sa = -11; printf("ua = %d, ua >> 2 = %d\n", ua, ua >> 2); printf("sa = %d, sa >> 2 = %d\n", sa, sa >> 2); printf("(unsigned) sa = %u, sa >> 2 = %u\n", sa, sa >> 2); printf("sa = %d, ((unsigned) sa) >> 2 = %d", sa, ((unsigned) sa) >> 2);

В данном случае при первом сдвиге всё работает, как и задумано, потому что число без знака. Во втором случае компилятор VSE2013 оставляет знак. Однако если посмотреть на представление этого числа, как беззнакового, сдвиг происходит по другим правилам, с сохранением самого левого бита. В последней строчке, если привести число со знаком к числу без знака, то произойдёт обычный сдвиг, и мы получим в результате положительное число.

Побитовые операторы и операторы сдвига не изменяют значения числа, возвращая новое. Они также как и арифметические операторы, могут входить в состав сложного присваивания

Int a = 10; int b = 1; a >>= 3; a ^= (b << 3); и т.д.

Примеры

1. Напишем функции, которые позволяют определять и изменять определённый бит числа

Для того, чтобы узнать, какой бит (1 или 0) стоит на позиции n, воспользуемся логическим умножением.

Пусть имеется число 9

00001001

Нужно узнать, выставлен ли бит на позиции 3 (начиная с нуля). Для этого умножим его на число, у которого все биты равны нулю, кроме третьего:

00001001 & 00001000 = 00001000

Теперь узнаем значение бита в позиции 6

00001001 & 01000000 = 00000000

Таким образом, если мы получаем ответ, равный нулю, то на искомой позиции находится ноль, иначе единица. Чтобы получить число, состоящее из нулей с одним битом на нужной позиции, сдвинем 1 на нужное число бит влево.

#include #include #include int checkbit(const int value, const int position) { int result; if ((value & (1 << position)) == 0) { result = 0; } else { result = 1; } return result; } void main() { int a = 3; size_t len = sizeof(int) * CHAR_BIT; size_t i; for (i = 0; i < len; i++) { printf("%d", checkbit(a, i)); } _getch(); }

Заметьте, что в функции условие записано так

(value & (1 << position)) == 0

Потому что без скобок сначала будет вычислено равенство нулю и только потом выполнено умножение.

Value & (1 << position) == 0

Функцию можно упростить

Int checkbit(const int value, const int position) { return ((value & (1 << position)) != 0); }

Функция, которая выставляет бит на n-й позиции в единицу.

Известно, что логическое сложение любого бита с 1 будет равно 1. Так что для установки n-го бита нужно логически сложить число с таким, у которого все биты, кроме нужного, равны нулю. Как получить такое число, уже рассмотрено.

Int setbit(const int value, const int position) { return (value | (1 << position)); }

Функция, которая устанавливает бит на n-й позиции в ноль.

Для этого нужно, чтобы все биты числа, кроме n-го, не изменились. Умножим число на такое, у которого все биты равны единице, кроме бита под номером n. Например

0001011 & 1110111 = 0000011

Чтобы получить такую маску, сначала создадим число с нулями и одной единицей, а потом инвертируем его.

Int unsetbit(const int value, const int position) { return (value & ~(1 << position)); }

Функция, изменющая значение n-го бита на противоположное.

Для этого воспользуемся функцией исключающего или: применим операцию XOR к числу, которое состоит из одних нулей и одной единицы на месте нужного бита.

Int switchbit(const int value, const int position) { return (value ^ (1 << position)); }

Проверка

#include #include #include int checkbit(const int value, const int position) { return ((value & (1 << position)) != 0); } int setbit(const int value, const int position) { return (value | (1 << position)); } int unsetbit(const int value, const int position) { return (value & ~(1 << position)); } int switchbit(const int value, const int position) { return (value ^ (1 << position)); } void printbits(int n) { //CHAR_BIT опеределён в библиотеке limits.h //и хранит число бит в байте для данной платформы size_t len = sizeof(int)* CHAR_BIT; size_t i; for (i = 0; i < len; i++) { printf("%d", checkbit(n, i)); } printf("\n"); } void main() { int a = 3; size_t len = sizeof(int) * CHAR_BIT; size_t i; printbits(a); a = setbit(a, 5); printbits(a); a = unsetbit(a, 5); printbits(a); a = switchbit(a, 11); printbits(a); a = switchbit(a, 11); printbits(a); _getch(); }

Битовые флаги

Расммотрим синтетический пример. Пусть у нас есть три логические переменные, и нам нужно вывести определённое значение в зависимости от всех этих переменных сразу. Очевидно, что может быть 2 3 возможных вариантов. Запишем это условие в виде ветвления:

#include int main() { unsigned char a, b, c; a = 1; b = 0; c = 0; if (a) { if (b) { if (c) { printf("true true true"); } else { printf("true true false"); } } else { if (c) { printf("true false true"); } else { printf("true false false"); } } } else { if (b) { if (c) { printf("false true true"); } else { printf("false true false"); } } else { if (c) { printf("false false true"); } else { printf("false false false"); } } } _getch(); return 0; }

Мы получили 8 ветвей. Пусть теперь нам понадобилось добавить ещё одно условие. Тогда число ветвей удвоится, и программа станет ещё сложней для понимания и отладки. Перепишем пример.

Если каждое из наших логичесих значений сдвинуть на своё число бит влево и логически сложить, то мы получим свою уникальную комбинацию бит в зависимоти от значений a, b и c:

#include #include void printbits (int n) { int i; for (i = CHAR_BIT - 1; i >= 0; i--) { printf("%d", (n & (1 << i)) != 0); } printf("\n"); } int main() { unsigned char a, b, c; unsigned char res; a = 1; b = 0; c = 0; res = c | b << 1 | a << 2; printbits(res); a = 0; b = 1; c = 1; res = c | b << 1 | a << 2; printbits(res); a = 1; b = 0; c = 1; res = c | b << 1 | a << 2; printbits(res); _getch(); return 0; }

Используем этот подход к нашей задаче и заменим ветвеление на switch:

#include int main() { unsigned char a, b, c; unsigned char res; a = 1; b = 0; c = 0; res = c | b<< 1 | a << 2; switch (res) { case 0b00000000: printf("false false false"); break; case 0b00000001: printf("false false true"); break; case 0b00000010: printf("false true false"); break; case 0b00000011: printf("false true true"); break; case 0b00000100: printf("true false false"); break; case 0b00000101: printf("true false true"); break; case 0b00000110: printf("true true false"); break; case 0b00000111: printf("true true true"); break; } _getch(); return 0; }

Этот метод очень часто используется для назначения опций функций в разных языках программирования. Каждый флаг принимает своё уникальное название, а их совместное значение как логическая сумма всех используемых флагов. Например, библиотека fcntl.

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» - единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.

Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

В этой статье я расскажу вам о том, как работают битовые операции. С первого взгляда они могут показаться вам чем-то сложным и бесполезным, но на самом деле это совсем не так. В этом я и попытаюсь вас убедить.

Введение

Побитовые операторы проводят операции непосредственно на битах числа, поэтому числа в примерах будут в двоичной системе счисления.

Я расскажу о следующих побитовых операторах:

  • | (Побитовое ИЛИ (OR)),
  • & (Побитовое И (AND)),
  • ^ (Исключающее ИЛИ (XOR)),
  • ~ (Побитовое отрицание (NOT)),
  • << (Побитовый сдвиг влево),
  • >> (Побитовый сдвиг вправо).

Битовые операции изучаются в дискретной математике, а также лежат в основе цифровой техники, так как на них основана логика работы логических вентилей - базовых элементов цифровых схем. В дискретной математике, как и в цифровой технике, для описания их работы используются таблицы истинности. Таблицы истинности, как мне кажется, значительно облегчают понимание битовых операций, поэтому я приведу их в этой статье. Их, тем не менее, почти не используют в объяснениях побитовых операторов высокоуровневых языков программирования.

О битовых операторах вам также необходимо знать:

  1. Некоторые побитовые операторы похожи на операторы, с которыми вы наверняка знакомы (&&, ||). Это потому, что они на самом деле в чем-то похожи. Тем не менее, путать их ни в коем случае нельзя.
  2. Большинство битовых операций являются операциями составного присваивания.

Побитовое ИЛИ (OR)

Побитовое ИЛИ действует эквивалентно логическому ИЛИ, но примененному к каждой паре битов двоичного числа. Двоичный разряд результата равен 0 только тогда, когда оба соответствующих бита в равны 0. Во всех других случаях двоичный результат равен 1. То есть, если у нас есть следующая таблица истинности:

38 | 53 будет таким:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A | B 0 0 1 1 0 1 1 1

В итоге мы получаем 110111 2 , или 55 10 .

Побитовое И (AND)

Побитовое И - это что-то вроде операции, противоположной побитовому ИЛИ. Двоичный разряд результата равен 1 только тогда, когда оба соответствующих бита операндов равны 1. Другими словами, можно сказать, двоичные разряды получившегося числа - это результат умножения соответствующих битов операнда: 1х1 = 1, 1х0 = 0. Побитовому И соответствует следующая таблица истинности:

Пример работы побитового И на выражении 38 & 53:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A & B 0 0 1 0 0 1 0 0

Как результат, получаем 100100 2 , или 36 10 .

С помощью побитового оператора И можно проверить, является ли число четным или нечетным. Для целых чисел, если младший бит равен 1, то число нечетное (основываясь на преобразовании двоичных чисел в десятичные). Зачем это нужно, если можно просто использовать %2 ? На моем компьютере, например, &1 выполняется на 66% быстрее. Довольно неплохое повышение производительности, скажу я вам.

Исключающее ИЛИ (XOR)

Разница между исключающим ИЛИ и побитовым ИЛИ в том, что для получения 1 только один бит в паре может быть 1:

Например, выражение 138^43 будет равно…

A 1 0 0 0 1 0 1 0
B 0 0 1 0 1 0 1 1
A ^ B 1 0 1 0 0 0 0 1

… 10100001 2 , или 160 10

С помощью ^ можно поменять значения двух переменных (имеющих одинаковый тип данных) без использования временной переменной.

Также с помощью исключающего ИЛИ можно зашифровать текст. Для этого нужно лишь итерировать через все символы, и ^ их с символом-ключом. Для более сложного шифра можно использовать строку символов:

String msg = "This is a message"; char message = msg.toCharArray(); String key = ".*)"; String encryptedString = new String(); for(int i = 0; i< message.length; i++){ encryptedString += message[i]^key.toCharArray(); }

Исключающее ИЛИ не самый надежный способ шифровки, но его можно сделать частью шифровального алгоритма.

Побитовое отрицание (NOT)

Побитовое отрицание инвертирует все биты операнда. То есть, то что было 1 станет 0, и наоборот.

Вот, например, операция ~52:

A 0 0 1 1 0 1 0 0
~A 1 1 0 0 1 0 1 1

Результатом будет 203 10

При использовании побитового отрицания знак результата всегда будет противоположен знаку исходного числа (при работе со знаковыми числами). Почему так происходит, узнаете прямо сейчас.

Дополнительный код

Здесь мне стоит рассказать вам немного о способе представления отрицательных целых чисел в ЭВМ, а именно о дополнительном коде (two’s complement). Не вдаваясь в подробности, он нужен для облегчения арифметики двоичных чисел.

Главное, что вам нужно знать о числах, записанных в дополнительном коде - это то, что старший разряд является знаковым. Если он равен 0, то число положительное и совпадает с представлением этого числа в прямом коде, а если 1 - то оно отрицательное. То есть, 10111101 - отрицательное число, а 01000011 - положительное.

Чтобы преобразовать отрицательное число в дополнительный код, нужно инвертировать все биты числа (то есть, по сути, использовать побитовое отрицание) и добавить к результату 1.

Например, если мы имеем 109:

A 0 1 1 0 1 1 0 1
~A 1 0 0 1 0 0 1 0
~A+1 1 0 0 1 0 0 1 1

Представленным выше методом мы получаем -109 в дополнительном коде.
Только что было представлено очень упрощенное объяснение дополнительного кода, и я настоятельно советую вам детальнее изучить эту тему.

Побитовый сдвиг влево

Побитовые сдвиги немного отличаются от рассмотренных ранее битовых операций. Побитовый сдвиг влево сдвигает биты своего операнда на N количество битов влево, начиная с младшего бита. Пустые места после сдвига заполняются нулями. Происходит это так:

A 1 0 1 1 0 1 0 0
A<<2 1 1 0 1 0 0 0 0

Интересной особенностью сдвига влево на N позиций является то, что это эквивалентно умножению числа на 2 N . Таким образом, 43<<4 == 43*Math.pow(2,4) . Использование сдвига влево вместо Math.pow обеспечит неплохой прирост производительности.

Побитовый сдвиг вправо

Как вы могли догадаться, >> сдвигает биты операнда на обозначенное количество битов вправо.

Если операнд положительный, то пустые места заполняются нулями. Если же изначально мы работаем с отрицательным числом, то все пустые места слева заполняются единицами. Это делается для сохранения знака в соответствии с дополнительным кодом, объясненным ранее.

Так как побитовый сдвиг вправо - это операция, противоположная побитовому сдвигу влево, несложно догадаться, что сдвиг числа вправо на N количество позиций также делит это число на 2 N . Опять же, это выполняется намного быстрее обычного деления.

Вывод

Итак, теперь вы знаете больше о битовых операциях и не боитесь их. Могу предположить, что вы не будете использовать >>1 при каждом делении на 2. Тем не менее, битовые операции неплохо иметь в своем арсенале, и теперь вы сможете воспользоваться ими в случае надобности или же ответить на каверзный вопрос на собеседовании.

Простейшие логические операции

Простейшие логические операции относятся к двузначной логике. Их 4 штуки: “НЕ”, “И”, “ИЛИ”, “XOR”. Также для обозначения этих операций используют разные значки (“~”, “&” и т.п.).

При записи логических формул вместо слов “истина” и “ложь” обычно используют стандартные международные обозначения:
Вместо “истина” пишут: true, T, t, 1.
Вместо “ложь” пишут: false, F, f, 0.

“НЕ”

Операция “НЕ” преобразует истину в ложь, а ложь в истину:

НЕ true = false
НЕ false = true

У этой операции бывают разные другие названия: “логическое НЕ”, “отрицание”, “логическое отрицание”, “инверсия”, “логическая инверсия”. Для международных обозначений вместо “НЕ” пишут “NOT”.

В естественном языке этой операции соответствует добавление слов “неправда, что...” в начале высказывания. Например:

Применение операции “НЕ” к высказыванию (1):

“Неправда, что Сурков должен мне денег”. (2)

Если высказывание (1) ложно, то высказывание (2) истинно. Если высказывание (2) ложно, то высказывание (1) истинно.

Нетрудно понять, что двойное применение “НЕ” возвращает нас к прежней истинности.

“Неправда, что неправда, что Сурков должен мне денег”. (3)

Истинность высказывания (3) всегда совпадает с истинностью высказывания (1).

“И”

Операция “И” применяется к двум высказываниям. Ее результат “истина”, только если оба высказывания истинны (а иначе “ложь”):

false И false = false
false И true = false
true И false = false
true И true = true

У этой операции бывают разные другие названия: “логическое И”, “конъюнкция”, “логическое умножение”. Для международных обозначений вместо “И” пишут “AND”.

В естественном языке этой операции соответствует вставка союза “и” между высказываниями. Например:

“Сурков должен мне денег”. (1)
“Петров должен мне денег”. (2)

Применение операции “И” к высказываниям (1) и (2):

“Сурков должен мне денег, и Петров должен мне денег”. (3)

Эту фразу можно сократить, сохранив прежний смысл:

“Сурков и Петров должны мне денег”. (3)

Высказывание (3) истинно только тогда, когда истинны оба высказывания: (1) и (2). Если хотя бы одно из них ложно, то результат тоже ложен. Если оба ложны – тоже.

То есть, если Петров мне денег не задолжал, а задолжал только Сурков, тогда высказывание (3) не будет “полуправдой” или “полуложью”, а будет просто ложью.

“ИЛИ”

Операция “ИЛИ” применяется к двум высказываниям. Ее результат “истина”, если хотя бы одно высказывание истинно (а иначе “ложь”):

false ИЛИ false = false
false ИЛИ true = true
true ИЛИ false = true
true ИЛИ true = true

У этой операции бывают разные другие названия: “логическое ИЛИ”, “включающее ИЛИ”, “дизъюнкция”, “логическое сложение”. Для международных обозначений вместо “ИЛИ” пишут “OR”.
В естественном языке этой операции соответствует вставка союза “или” между высказываниями, но... не всегда (см. ниже об операции “XOR”). Например:

“Я хочу попить”. (1)
“Я хочу поесть”. (2)

Применение операции “ИЛИ” к высказываниям (1) и (2):

“Я хочу попить, или я хочу поесть”. (3)

По-русски звучит правильно, но коряво, и эту фразу можно сократить, сохранив прежний смысл:

“Я хочу попить или поесть ”. (3)

Высказывание (3) истинно тогда, когда истинно хотя бы одно из высказываний (1) и (2), а можно оба. Если оба высказывания ложны, то результат тоже ложен.

То есть, если я хочу есть, но не пить, тогда высказывание (3) истинно. Если я не прочь и поесть, и попить, выказывание (3) тоже истинно. Ложно оно тогда, когдя я не хочу ни того, ни другого.

“XOR”

Операция “XOR” применяется к двум высказываниям. Ее результат “истина”, если ровно одно из высказываний истинно (а иначе “ложь”):

false XOR false = false
false XOR true = true
true XOR false = true
true XOR true = false

У этой операции бывают разные другие названия: “исключающее ИЛИ”, “сложение по модулю 2”, “логическое сложение по модулю 2”. “XOR” – это международное обозначение, общепринятого “русского” аналога нет.

В естественном языке этой операции соответствует вставка союза “или” между высказываниями – так же, как в случае с операцией “ИЛИ”. Например:

“Я собираюсь просить прибавки к зарплате”. (1)
“Я попытаюсь сэкономить ”. (2)

Применение операции “XOR” к высказываниям (1) и (2):

“Я собираюсь просить прибавки к зарплате или я попытаюсь сэкономить”. (3)

Сокращенно:

“Я собираюсь просить прибавки к зарплате или попытаюсь сэкономить”. (3)

Высказывание (3) истинно тогда, когда истинно ровно одно из высказываний (1) и (2). Если я не собираюсь ни просить прибавки, ни экономить, тогда фраза ложна. Также, я имел в виду, что не собираюсь делать и то, и другое одновременно.

Обратите внимание на разницу между операциями “ИЛИ” и “XOR”. Она заключается только в последнем правиле:

true ИЛИ true = true
true XOR true = false

В естественном языке обе операции изображаются одним и тем же союзом “или”. Это – пример неоднозначности естественного языка. Если помните, омонимы и многозначные слова могут иметь больше одного значения. Союз “или” именно такой: он имеет два возможных значения. Первое выражается логической операцией “ИЛИ”, второе – логической операцией “XOR”.

В английском языке существуют те же проблемы: союз “or” имеет те же два значения. А вот древним римлянам было проще, так как в латыни есть два разных слова: “vel” (операция “ИЛИ”) и “aut” (операция “XOR”).

Поскольку разница между операциями “ИЛИ” и “XOR” невелика (всего одно последнее правило), то иногда эта разница не имеет значения. Иногда о том, что имеется в виду, можно догадаться по интонации, или по контексту. Иногда определить точный смысл так и не удается.