Редактировать анимированный gif. Программы для редактирования gif анимации. Казалось бы, с виду простенький редактор, а какой мощный

§ 1. Сущность и условия кислородной резки. Основные параметры реза при разделительной кислородной резке. Влияние примесей в стали на процесс кислородной резки. .

Сущность процесса кислородной резки основана на сгорании металла в струе кислорода и удалении этой струей образующихся жидких окислов. Резке предшествует нагрев места начала реза до температуры примерно 1300-1350° С (для стали). После этого включается подача режущего кислорода, который окисляет металл и разрезает его. Сгоревший (окисленный) металл выдувается струей кислорода. В процессе горения (окисления) металла выделяется большое количество теплоты, которая нагревает близлежащие (впереди лежащие) слои металла до температуры воспламенения. Таким образом, процесс горения металла в кислороде распространяется по всей толщине разрезаемого металла.

Обычной кислородной резке поддаются только те металлы, которые удовлетворяют следующим условиям:

1. Температура воспламенения металла в кислороде должна быть ниже температуры его плавления. Низкоуглеродистая сталь плавится при температуре примерно 1500° С, а воспламеняется в кислороде при температуре 1300-1350° С; она хорошо поддается кислородной резке.

2. Температура плавления образующихся окислов должна быть ниже температуры плавления основного металла, так как в противном случае тугоплавкие окислы не будут выдуваться струей кислорода и процесс резки может прекратиться. Хромистые стали образуют тугоплавкие окислы хрома с температурой плавления около 2000° С. Они поддаются только кислородно-флюсовой резке.

3. Количество теплоты, выделяющейся при сгорании металла в струе кислорода, должно быть достаточным для подогревания последующих нижележащих (впереди лежащих) слоев, т. е. для поддержания непрерывного процесса резки.

4. Теплопроводность металла не должна быть высокой, так как интенсивный отвод теплоты от места реза приведет к тому, что процесс резки будет прерываться или вообще не начнется. По этой причине медь, алюминий и их сплавы поддаются только кислородно-флюсовой резке.

5. Образующиеся при сгорании металла шлаки должны быть жидкотекучими, так как тугоплавкие и вязкие шлаки не будут выдуваться кислородной струей из полости реза. Поэтому чугуны, образующие тугоплавкие окислы кремния, резке не поддаются: для них возможна только кислородно-флюсовая резка.

С увеличением содержания в стали углерода, а также различных примесей процесс резки усложняется. Влияние их на процесс резки приведено в табл. 52.

52. Влияние примесей в стали на процесс резки

Приближенно на способность подвергаться резке различных сталей указывает эквивалентное содержание углерода в ней, которое определяется по формуле

С эк =С+0,155 (Cr+Mo)+0,14 (Mn+V)+0,11Si+0,045 (Ni+Cu)

B этой формуле цифры при символах элементов означают содержание их в стали в весовых процентах.

При резке сталей с повышенным эквивалентным содержанием углерода необходим предварительный подогрев (табл. 53).

53. Температура предварительного подогрева стали при резке

По направленности струи режущего кислорода и характеру образуемых резов различают два основных вида кислородной резки: 1. Разделительную, образующую сквозные разрезы (вырезка деталей из листа, резка металла на части, скос кромок под сварку и др.).

2. Поверхностную, дающую на поверхности металла углубления (канавки) овальных очертаний (удаление дефектных швов, строжка поверхности, выплавка канавок и др.).

Основные параметры реза при разделительной кислородной резке показаны на рис. 127.

Рис. 127. Основные параметры реза :

B В - ширина реза вверху, B Н -ширина реза внизу, f - неперпендикулярность реза, l - глубина бороздок (шероховатость), Δ - отставание, r - радиус оплавления верхней кромки

На скорость резки большое влияние оказывает чистота кислорода (табл. 54). С уменьшением чистоты кислорода значительно снижается скорость резки. Наиболее целесообразно применять кислород чистотой 99,5% и более. Применять кислород чистотой 95% нецелесообразно, так как кроме малой скорости резки поверхность реза получается нечистой, с глубокими рисками и трудно отделимым гратом.

54. Зависимость скорости резки от чистоты кислорода

* За 100% принята скорость резки для кислорода чистотой 99,5%.


К атегория:

Резание металла

Сущность процесса резки металла

Резкой, или разрезанием, называют отделение частей (заготовок) от сортового или листового металла. Резка выполняется как со снятием стружки, так и без ее снятия. Способы разрезания со снятием стружки: ручной ножовкой, на ножовочных, круглопильных, то-карно-отрезных станках, а также газовой, дуговой резкой и другими способами.

Без снятия стружки материалы разрезают ручными рычажными и механическими ножницами, кусачками, труборезами, пресс-ножницами, штампами. К резке относится также и надрезание металла.

Рис. 1. Схема развальцовывания: 1 - конец трубы, 2 - фланец, 3,4 - ролики, 5 - канавки, 6 - труба до вальцевания, 7 - труба после вальцевания

Рис. 2. Ножницы ручные для резки металла: а - с прямыми лезвиями, б - прямые правые, в - с криволинейными лезвиями

Сущность процесса резки ножницами заключается в отделении частей металла под давлением пары режущих ножей. Разрезаемый лист помещают между верхним и нижним ножами.

Верхний нож, опускаясь, давит на металл и разрезает его.

Большое давление, испытываемое лезвиями при резании, требует большого угла заострения р. Чем тверже разрезаемый металл, тем больше угол заострения лезвия; для мягких металлов (медь и др.) он равен 65°, для металлов средней твердости - 70 - 75° и для твердых - 80 - 85°. С целью уменьшения трения лезвий ножей о разрезаемый металл лезвиям придается небольшой задний угол а (1,5-3°).

1. СУЩНОСТЬ ПРОЦЕССА КИСЛОРОДНОЙ РЕЗКИ

Основой процесса кислородной резки стали является свойство железа интенсивно сгорать в струе технически чистого кислорода, будучи нагретым до температуры порядка 1300—1400° С, близкой к температуре плавления стали.

Металл при резке нагревают газокислородным пламенем. В качестве горючих применяются ацетилен, пропан-бутан, пиролизный, природный, коксовый и городской газы, пары керосина.

Металл нагревают на узком участке в начале линии разреза, а затем на нагретое место направляется струя режущего кислорода и резак начинают перемещать по намеченной линии резки. Металл сгорает по всей толщине листа, образуя в нем узкую щель (рез). Интенсивное окисление (горение) железа происходит только в слоях, пограничных с поверхностью режущей струи кислорода, который проникает (диффундирует) в металл на очень малую глубину.

Для сгорания 1 кг железа теоретически требуется от 0,29 до 0,38 м 3 кислорода, в зависимости от того, какой окисел получается при горении — FeO или Fе з 0 4 . Практический расход кислорода может сильно отличаться от теоретического, так как в шлаках присутствуют оба окисла в различных соотношениях, часть металла удаляется из разреза в расплавленном состоянии, часть кислорода расходуется на выдувание жидкого металла и шлаков, а также теряется в окружающую среду. Для резки применяют технический кислород чистотой 98,8—99,7%. С понижением чистоты кислорода на 1 % его расход на 1 м длины резки возрастает на 25—35%, а время резки — на 10—15%. Это особенно заметно при резке стали больших толщин. Применять для резки кислород чистотой ниже 98% нецелесообразно, так как поверхность реза получается недостаточно чистой, с глубокими рисками и трудноотделяемым шлаком.

Существует также способ т.н. импульсной кислородной резки. Данный способ разработан ВНИИАвтогенмаш и состоит в том, что после начального подогрева по всей длине линии реза на нее пускается режущий кислород. Процесс резки протекает всего несколько десятков секунд. Так, например, труба диаметром 219 мм, толщиной стенки 15 мм прорезается за 77 сек. Для резки применяют секционированные резаки с внутрисопловым смешением газов (см. рис. 90, и).

2. ОСНОВНЫЕ УСЛОВИЯ РЕЗКИ. ВЛИЯНИЕ СОСТАВА СТАЛИ НА РЕЗКУ

Основные условия резки. Для резки металла кислородом необходимы следующие условия:

а) температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде;

б) образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком вязкими; если металл не удовлетворяет этому требованию, то кислородная резка его без применения специальных флюсов невозможна, так как образующиеся окислы не смогут выдуваться из места разреза;

в) количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточно большим, чтобы обеспечить поддержание процесса резки. При резке стали около 70% тепла, используемого для подогревания, выделяется при сгорании металла в кислороде и только 30% подводится от подогревающего пламени;

г) теплопроводность металла не должна быть слишком высокой, иначе, вследствие интенсивного теплоотвода, процесс резки может прерваться.

Влияние состава стали на резку. Перечисленным выше условиям наиболее полно отвечают чистое железо и стали с низким содержанием углерода. Чистое железо имеет температуру воспламенения в кислороде 1050° С, а температуру плавления 1528°С. При содержании в стали 0,7% углерода температура ее воспламенения в кислороде повышается до 1300° С, что равно температуре начала плавления стали этого состава. По данным А. Н. Шашкова избирательное окисление железа в кислороде при резке стали начинается при температуре около 1130°С, а при 1300°С и выше начинается интенсивное выгорание углерода.

На температуру загорания, кроме состава металла, оказывает влияние также состояние поверхности металла, величина его кусков, давление и скорость потока кислорода. Шероховатая поверхность облегчает загорание металла в кислороде. Порошок железа может воспламеняться в чистом кислороде при температуре 315°С, т. е. значительно более низкой, чем прокатанный металл. Металл на поверхности крупного куска стали загорается при температуре 1200—1300°С. При давлении 25 кгс/см 2 и скорости потока кислорода 180 м/сек температура загорания углеродистой стали в кислороде снижается до 700—750° С.

Сущность кислородной резки. Кислородной резкой на­зывают способ разделения металла, основанный на использовании для его нагрева до температуры воспламенения-теплоты газового пламени и экзотермической (с выделением теплоты) реакции окисления металла, а для удаления окис­лов - кинетической энергии режущего кислорода.

По характеру и направленности кислородной струи раз­личают три основных вида резки: разделительная, при которой образуются сквозные разрезы; поверхностная, при которой снимается поверхностный слой металла; кислород­ным копьем, заключающаяся в прожигании в металле глу­боких отверстий.

На рис. 6 показана схема разделительной резки. Металл 3 нагревается в начальной точке реза до температуры вос­пламенения (в кислороде для стали до 1000-1200°С) подо­гревающим ацетиленокислородным пламенем 2, затем направляется струя режущего кислорода 1, и нагретый металл начинает гореть с выделением значительного количества теплоты по реакции 2Fe+2O 2 =Fe 3 O 4 +Q.

Теплота от горения железа Q вместе с подогревающим пламенем разогревает лежащие ниже слои и распространя­ется на всю толщину металла. Чем меньше толщина разрезаемого металла, тем больше роль подогревающего пламени (при толщине 5 мм - до 80% общего количества теплоты, выделяемой при резке, при толщине более 50 мм - только 10%). Образующиеся окислы 5, а также ча­стично расплавленный металл удаля­ются из зоны реза 4 под действием кинетической энергии струи кислоро­да. Непрерывный подвод теплоты и режущего кислорода обеспечивают не­прерывность процесса.

Условия резки и разрезаемость . Для обеспечения нормального процес­са резки должны быть выполнены следующие условия:

1. Источник теплоты должен иметь необходимую мощность, чтобы обеспечить нагрев металла до требуемой температуры сгорания металла, а количество теплоты, выделяющейся при сгора­нии металла в кислородной струе, должно быть достаточным для поддержания непрерывного процесса резки,

2. Температура плавления металла должна быть выше температуры его окисления (горения) в кислороде, иначе металл при нагреве будет плавиться и принудительно уда­ляться из разреза без характерного для процесса резки оки­сления, являющегося главным источником теплоты.

3. Температура плавления металла должна быть выше температуры плавления образующихся в процессе резки окислов, иначе тугоплавкие окислы изолируют металл от контакта с кислородом и затруднят процесс резки.

4. Образующиеся окислы и шлак должны быть жидкотекучими и легко выдуваться струей режущего кислорода, иначе контакт кислорода с жидким металлом будет замед­лен или вовсе невозможен.

Всем перечисленным условиям удовлетворяет углеродис­тая сталь, поэтому ее можно резать кислородом.

Первому условию при газовой резке не удовлетворяет медь в связи с ее высокой теплопроводностью, сильно за­трудняющей начало процесса резки, и низким тепловыделе­нием при окислении. Поэтому мощности газовых резаков недостаточно для резки меди, и медь можно резать, приме­няя более мощный тепловой источник - электрическую дугу.

Второму и четвертому условию не удовлетворяет чугун. По мере повышения содержания углерода в железе процесс резки значительно ухудшается из-за снижения температуры плавления и повышения температуры воспламенения. Чугун, содержащий более 1,7% углерода, кислородной резкой не обрабатывается. Кроме того, вязкость шлака значительно возрастает при увеличении содержания кремния, который обязательно содержится в чугуне, что также является одной из причин невозможности вести кислородную резку чугуна. Третье условие не удовлетворяется при резке алюминия, магния и их сплавов, а также сталей с большим содержани­ем хрома и никеля. При нагревании этих сплавов в процес­се резки на их поверхности образуется пленка тугоплавкого окисла, препятствующая поступлению кислорода к неокис­ленному металлу.

Основные параметры кислородной раздели­тельной резки :

характеристики подогревающего пламени - мощность, горючий газ, соотношение смеси горючего газа и кислорода;

характеристики струи режущего кислорода - давление, расход, форма, чистота, скорость резки.

Подогревающее пламя имеет при резке нейтральный ха­рактер (β=1,1 для ацетилена, β=3,5 для пропанобутановой смеси). Мощность подогревающего пламени увеличивают с увеличением толщины разрезаемого металла.

Качество кислородной резки. Качество резки характери­зуется точностью траектории и качеством поверхности реза. Наименьшие отклонения траектории (линии) реза от задан­ной получаются при резке на машинах с программным, фотоэлектронным и электромагнитным управлением, наи­большие - при ручной резке без направляющих приспособ­лений. Величина отклонений зависит от длины, толщины, состояния поверхности листа, формы вырезаемой заготовки, квалификации резчика.

Качество реза характеризуется неперпендикулярностью и шероховатостью его поверхности, равномерностью шири­ны реза, наличием подплавления верхней кромки и грата на нижней кромке (рис. 7, а).

Неперпендикулярность поверхности реза образуется при изменении угла наклона резака к поверхности листа, а также от расширения режущей струи кислорода при вы­ходе ее из реза. Шероховатость поверхности реза опреде­ляется количеством и глубиной бороздок, оставляемых ре­жущей струей кислорода (рис. 7, в). Бороздки имеют обыч­но криволинейное очертание из-за отставания Δ от оси мунд­штука режущей струи кислорода (рис. 7, б). Чем больше толщина металла, меньше чистота кислорода, тем больше отставание. Обычно отставание составляет от 1 до 15 мм при прямолинейной резке листов толщины от 5 до 200 мм. Глубина бороздок зависит от давления кислорода, скорости резки, равномерности перемещения резака и состава горю­чего. Величина оплавления кромок находится в прямой за­висимости от мощности подогревающего пламени к в обрат­ной - от скорости резки. ГОСТ 14792 устанавливает три класса качества при машинной резке: 1-й класс- выс­ший, 2-й класс - повышенный, 3-й класс - обычный. Для каждого класса установлены предельные допуски на не­перпендикулярность поверхности, на шероховатость и отклонения от линии реза.

Для повышения производительности и качества реза применяют ряд разновидностей кислородной разделитель­ной резки.

Скоростная кислородная резка достигается за счет на­клона резака на 45° в сторону, обратную направлению пере­мещения. Скорость резки листовой стали толщиной 3-20 мм повышается в 2-3 раза, но ухудшается качество реза.

Высококачественная скоростная кислородная резка (смыв-процесс) позволяет увеличить и скорость (в 1,5-2,5 ра­за) и качество резки. Первое достигается за счет острого угла наклона резака - 25°, второе - применением специ­альных мундштуков, имеющих три отверстия для режущего кислорода, расположенных по углам равнобедренного тре­угольника. Впереди перемещается основная режущая струя, которая осуществляет резку металла на всю толщину. Две другие струи, расположенные по бокам и сзади основной, «защищают» горячие кромки, образованные основной стру­ей, Недостатком способа с острым углом является невозмож­ность фигурных резов и большая ширина реза.

Резка кислородом высокого давления до 5 МПа обеспе­чивает увеличение скорости резки металла толщиной до 60 мм на 30-50%.

Стали толщиной до 300 мм, разрезают обычными универ­сальными резаками. Сварка сталей большой толщины связана с дополнительными трудностями: необходимостью при­менения высоких давлений кислорода, трудностью прогрева нижних слоев металла и удаления шлака на большом рас­стоянии от резака. Поэтому стали большой толщины (свы­ше 300 мм) режут специальными резаками, мундштуки которых имеют увеличенные по сравнению с универсальными резаками "проходные сечения для режущего кислорода. Применяют науглероживающее подогревающее пламя, так как в этом случае оно будет более длинным.

Поверхностная кислородная резка металла. Поверхно­стной кислородной резкой называется процесс снятия кис­лородной струей слоя металла, В этом случае струя кислоро­да направлена к поверхности обработки под острым углом 15-40°, но в отличие от разделительной резки направление струи совпадает с направлением резки, и металл, расположенный впереди резака, нагревается перемещающимся на­гретым шлаком (рис. 8).


Рис. 8. Схема поверхностной резки:

1 - мундштук, 2 - шлак, 3 - канавка

Рис. 9. Схема прожигания отверс­тия в бетоне кислородным копьем: 1 - держатель копья, 2 - копье, 3 - защитный экран, 4 - бетонное изделии


Резку кислородным копьем (рис. 9) выполняют тонко­стенной стальной трубкой (копьем) с наружным диаметром 20-35 мм. Трубку подсоединяют к рукоятке с вентилем для кислорода и по ней подают кислород к месту реза. До на­чала резки конец трубки нагревают газовой горелкой или электрической дугой до температуры воспламенения. Кис­лородное копье горящим концом прижимают с достаточно большим усилием к изделию (металл, бетон, железобетон) и прожигают, таким образом, отверстие. Образуемые в про­цессе прожигания отверстия шлаки давлением кислорода и газов выносятся наружу в зазор между копьем и стенкой прожигаемого отверстия. Этому процессу способствуют воз­вратно-поступательные и вращательные движения копьем.

Кислородно-флюсовая резка . Для резки хромистых, хромоникелевых нержавеющих сталей, чугуна и цветных ме­таллов, которые не удовлетворяют условиям кислородной резки, применяют способ кислородно-флюсовой резки. Сущность заключается в том, что в зону реза вместе с режущим кислородом вводится специальный порошкооб­разный флюс, при сгорании которого выделяется дополни­тельная теплота и повышается температура в зоне реза. Кроме того, продукты сгорания флюса, взаимодействуя с тугоплавкими окислами, образуют жидкотекучие шлаки, которые легко удаляются из зоны реза, не препятствуя нормальному протеканию процесса.

Основным компонентом порошкообразных флюсов, при­меняемых при резке металлов, является железный поро­шок, который, сгорая, выделяет большое количество тепло­ты (около 1800 ккал/кг). Лучшие результаты при сварке нержавеющих сталей достигаются при добавлении к желез­ному порошку 10-15% алюминиевого порошка. Для по­верхностной и разделительной резки нержавеющих сталей используют в качестве флюса смесь алюминиево-магниевого порошка с ферросилицием или силикокальцием. Алюминиево-магниевый порошок, входящий во флюсовую смесь, сгорая в струе кислорода, повышает температуру пламени, а ферросилиций или силикокальций действует на окислы хрома, как флюсующая добавка.

Основная задача флюса при резке чугуна состоит в раз­бавлении флюса железом в области реза, снижении в сплаве содержания углерода, а также разжижении шлака, в кото­ром содержится много кислорода. В состав флюсов для резки чугуна входят железный и алюминиевый порошки, кварцевый песок и феррофосфор.

Цветные металлы и сплавы подвергаются кислородно-флюсовой резке только с применением флюсов. Установки для кислородно-флюсовой резки состоят из двух основных частей: резака (ручного или машинного) и флюсопитателя, обеспечивающего подачу и регулирование расхода флюса.

Конец работы -

Эта тема принадлежит разделу:

Технологические основы сварки плавлением и давлением

Лекция.. введение.. г петров открытие электрической дуги г бенардос н н запантетовал сварку металлов электрической дугой между угольными электродами..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аппараты подвесного типа
В аппаратах этого типа, как правило, отсутствует механизм для сварочного движения, что делает их достаточно простыми и портативными. Обычно в состав таких аппаратов входит механизм подачи электродо

Сущность газокислородной сварки
Горючие газы.При газопламенной обработке (сварке, резке, поверхностной обработке, пайке) в качестве источни­ка теплоты используется газовое пламя - пламя горючего газа, сжигаемого

Дуговые и лучевые виды резки металлов
Интенсивный нагрев металла электрической дугой ус­пешно используется в технике не только для сварки, но и для резки металла (рис. 10). Нашли применение следующие спо­собы дуговой ре

Оборудование и аппаратура для газовой сварки и резки
Ацетиленовые генераторы. Ацетиленовым генератором называется аппарат, служащий для получения ацетилена при разложении карбида кальция водой.

Требования безопасности труда при газовой сварке, и резке
Основными источниками опасности при газовой сварке и резке являются: взрывы ацетиленовых генераторов от обратных ударов пламени, если не срабатывает водяной затвор; взрывы кислоро

Лучевые способы сварки
ЭЛЕКТРОННО-ЛУЧЕВАЯ СВАРКА (ELs-) Этот способ сварки основан на использовании энергии, высво­бождаемой при торможении потока ускоренных электронов в свари­ваемых материалах. Преобразование

Границы применимости
Размеры: микроплазменную сварку рекомендуют для металла толщиной s = 0,01-1 мм; сварку сжатой дугой для s = 0,8-25 мм. Группы материалов: угле­родистые, низко- и высоколегированные стали;

Сущность и основы электроконтактных способов сварки
ЭЛЕКТРОКОНТАКТНАЯ СВАРКА Точечная сварка Схема точечной сварки показана на рис, 1, 2.

Сварка вращающимся трансформатором
Ток подводится к одной стороне детали роликовыми электродами, несущими вра­щающийся сварочный трансформатор, а сжатие кромок производится боковыми на­жимными роликами. Сварка осуществляется непреры