Пропускная способность оптоволоконного кабеля. Рынок оптоволоконной продукции в России

Оптоволоконный или просто оптический кабель является одним из самых популярных проводников. Он используется повсеместно как для создания новых кабельных систем, так и для обновления старых. Все потому, что оптоволоконный кабель имеет множество преимуществ перед медным. Именно их мы и рассмотрим в этой статье.

Чем выше пропускная способность, тем больше информации можно передавать. Оптоволоконный кабель обеспечивает большую пропускную способность: до 10Гбит/с и выше. Это лучшие показатели, чем у медного кабеля. Стоит также учитывать, что скорость передачи будет разной у разных типов кабеля. Например, одномодовый оптоволоконный кабель обеспечивает большую пропускную способность, чем многомодовый.

  • Расстояния и скорость

При использовании оптоволоконного кабеля информация передается с большей скоростью и на более дальние расстояния практически без потери сигнала. Эта возможность обеспечивается благодаря тому, что сигнал передается через оптику в виде световых лучей. Оптоволокно лишено ограничения на расстояние в 100 метров, как это можно наблюдать с неэкранированным медным кабелем без усилителя. Расстояние, на которое возможно передать сигнал, также будет зависеть от типа используемого кабеля, длины волны и самой сети. Расстояния варьируются от 550 метров для многомодового типа до 40 километров для одномодового типа кабеля.

  • Безопасность

С оптоволоконным кабелем вся ваша информация находится в безопасности. Сигнал, передаваемый по оптике, не излучается и его очень сложно перехватить. Если же кабель был поврежден, это легко отследить, так как он будет пропускать свет, что в итоге приведет к остановке всей передачи. Таким образом, если будет совершенна попытка физического взлома вашей оптоволоконной системы, вы обязательно узнаете об этом.

Стоить отметить, что оптоволоконные сети позволяют разместить всю электронику и оборудования в одном централизованном месте.

  • Надежность и прочность

Оптоволокно обеспечивает максимально надежную передачу данных. Оптический кабель имеет иммунитет ко множеству факторов, которые легко могут повлиять на работу медного кабеля. Центр жилы сделан из стекла, изолирующего от электрического тока. Оптика полностью устойчива к радио- и электромагнитным излучениям, взаимным помехам, проблемам с сопротивлением и многим другим факторам. Оптоволоконный кабель можно прокладывать рядом с промышленным оборудованием без каких-либо опасений. К тому же, оптоволоконный кабель не так чувствителен к температуре, как медный кабель, и легко может быть размещен в воде.

  • Внешний вид

Оптоволоконный кабель легче, тоньше и долговечнее в сравнении с медным. Для достижения больших скоростей передачи с использованием медного кабеля потребуется использование лучшего типа кабеля, который обычно более тяжелый, имеет больший диаметр и занимает больше места. Небольшие размеры оптического кабеля делают его более удобным. Также стоит отметить, что провести тестирование оптоволоконного кабеля намного легче, чем медного.

  • Конвертация

Большое распространение и низкая стоимость медиаконвертеров существенно упрощают передачу данных от медного кабеля к оптоволоконному. Конвертеры обеспечивают бесперебойное соединение с возможностью использования уже существующего оборудования.

  • Сварка кабеля

Хотя сварка оптоволоконного кабеля на сегодняшний день проходит более трудоемко, чем обжим медного кабеля, при использовании специальных инструментов для сварки этот процесс проходит намного легче.

  • Стоимость

Стоимость оптоволоконного кабеля, компонентов и оборудования для него постепенно снижается. На данный момент оптоволоконный кабель стоит дороже медного только в рамках короткого промежутка времени. Но при длительном использовании оптоволоконный кабель выйдет дешевле медного. Оптоволокно легче обслуживать, оно требует меньше сетевого оборудования. В дополнении ко всему, в наши дни появляется все больше решений, работающих с оптоволоконным кабелем: начиная от активных оптических кабелей HDMI и заканчивая профессиональными решениями для Digital Signage, подобно ZyPer4K от компании ZeeVee, представленного недавно на выставке NEC’s Solutions Showcase 2015 и позволяющего легко удлинять и переключать сигналы несжатого 4K видео, аудио и управления с использованием стандартной технологии 10Gb Ethernet через оптоволоконный кабель.

За последние 30 лет, пропускная способность оптического волокна была значительно увеличена. Рост пропускной способности передачи на волокно даже значительно быстрее, чем, например, увеличение емкости электронных чипов памяти, или в увеличение вычислительной мощности микропроцессоров.

Пропускная способность волокна зависит от длины волокна. Чем длиннее волокно, тем больше пагубных эффектов, таких как межмодовая или хроматическая дисперсия, и, следовательно, тем ниже достижимая скорость передачи.

Для коротких дистанций, в несколько сотен метров или меньше (например, в сети хранения данных), часто более удобно использовать многомодовые волокна, так как они дешевле для установки (например, из-за их большой площади сердцевины волокна, они легче сращиваются). В зависимости от технологии передачи и длины волокна, они достигают скорости передачи данных от нескольких сотен Мбит / с и ~ 10 Гбит / с.

Одномодовое волокно обычно используется для больших расстояний, в несколько километров и более. В текущих коммерческих системах телекоммуникации обычно скорость передачи 2,5 или 10 Гбит / с на канал передачи данных на расстояние десяти километров и более. В будущем системы могут использовать более высокие скорости передачи данных в канале, 40 или даже 160 Гбит / с, но в настоящее время требуемая общая мощность обычно получается путем передачи многими каналами с немного разными длинами волн через волокна; это называется спектральным уплотнением (WDM). Общая скорость передачи данных может быть несколько терабит в секунду, достаточной для передачи многих миллионов телефонных каналов одновременно. Даже этот потенциал не достигает на сегодняшний день физический предел оптического волокна. Кроме того, отметим, что волоконно-оптический кабель может содержать несколько слоев.

В заключение не стоит беспокоится, что технические ограничения к оптическим волокнам в передаче данных могут стать серьезными в обозримом будущем. Напротив, тот факт, что возможности передачи данных может развиваться быстрее, чем, например, хранения данных и вычислительные мощности, вдохновило некоторых людей, чтобы предсказать, что любые ограничения передачи скоро устареют, и большие вычисления и хранения объектов в высокой емкости сети передачи данных будет широко использоваться, аналогично тому, как она стала общей для использования электрических мощности от многих электростанциях в больших энергосистемах. Такое развитие событий может быть более строго ограничено программным обеспечением и безопасности, чем ограничение передачи данных.

по одному физическому волконно-оптическому кабелю. Такое увеличение емкости кабеля достигается исходя из фундаментального принципа физики. Он состоит в том, что лучи света с разными длинами волн не взаимодействуют между собой. Основная идея систем WDM состоит в использовании нескольких длин волн (или частот) для передачи отдельного потока данных на каждой из них. Благодаря этому удалось в 16-160 раз [ 16 ] увеличить широкополосность канала из расчета на одно волокно. Схема мультиплексирования показана на рис. 3.13 . На входе канала сигналы с помощью призмы объединяются в одно общее волокно. На выходе с помощью аналогичной призмы эти сигналы разделяются. Число волокон на входе и выходе может достигать 32 и более (вместо призм в последнее время используются миниатюрные зеркала, где применяется развертка по длине волны).


Рис. 3.13.

Эта достигается с помощью нескольких компонент . Во-первых, передаваемые данные должны посылаться на определенной несущей длине волны. Обычно волновое мультиплексирование WDM осуществляется в окне прозрачности 1530-1560 нм, где обеспечивается минимальное затухание сигнала до 0,2 дБ/км. Как правило, волоконно-оптические системы используют 3 длины волны - 850, 1310 и 1550 нм. Если входной сигнал является оптическим и передается на одной из этих длин волн, он должен быть преобразован для передачи с длиной волны окна прозрачности WDM . При наличии нескольких независимых входных сигналов каждый из них должен быть преобразован для передачи на своей длине волны в рамках этого диапазона. Затем эти сигналы объединяются с помощью оптической системы таким образом, что большая часть мощности всех сигналов передается по одному оптическому волокну. На другом конце линии световые сигналы разделяются с помощью сплиттера 5устройство, предназначенное для разделения сигнала на несколько частей. (еще одной системы линз) на несколько каналов. Каждый из этих каналов проходит через фильтры, отделяющие только одну из длин волн. В конце концов, каждая из отделенных длин волн попадает на свой приемник, который преобразует ее в исходный вид (оптический на длинах волн 850, 1310 и 1550 нм или медный).

Существует два типа систем WDM , обеспечивающих грубое ( CWDM ) мультиплексирование с большим шагом разноса несущих или плотное ( DWDM ) разделение шкалы длин волн. Системы CWDM обычно обеспечивают передачу от 8 до 16 длин волн с шагом в 20 нм, от 1310 до 1630 нм. Системы DWDM работают с количеством длин волн до 144, обычно с шагом менее 2 нм примерно в том же диапазоне длин волн. WDM ( CWDM или DWDM ) обычно используется в одном из двух приложений.

Первое и главное состоит в увеличении объема информации, передаваемого по оптическому волокну. В этом случае большое количество потоков данных передаются по небольшому количеству оптических кабелей. Это дает возможность значительно увеличить пропускную способность оптического кабеля. Так, при скорости 10 Гбит/с на канал общая пропускная способность каждого волокна составит 1,25 Тбит/с, (то есть 12 500 000 000 000 бит в секунду). Конечно, в большинстве случаев такой уровень скоростей не требуется, обычной задачей является передача нескольких потоков Gigabit Ethernet по одной паре волокон, когда дополнительных пар уже нет. Во многих случаях проложить новый оптический кабель оказывается слишком дорого или просто невозможно. Тогда использование технологии WDM становится единственной возможностью для увеличения пропускной способности.

Второе приложение WDM появилось сравнительно недавно, когда все большее число заказчиков стали использовать высокоскоростные каналы связи. В этом случае оператор связи предоставляет заказчикам, имеющим офисы в разных точках города, длины волн в своем кабеле для организации каналов " точка-точка ". Например, крупная компания, имеющая два здания в разных концах города, может поставить задачу их объединения. Для решения этой проблемы оператор может развернуть сеть . При использовании WDM оператору нет необходимости заботиться о том, какой протокол или технология используется заказчиками, что дает возможность более гибкого предоставления услуг. Использование WDM в сетях абонентского доступа будет рассмотрено в дальнейшем.

Устройства для организации WDM пассивны, т.е. не требуют электропитания. Однако многие из них требуют постоянной температуры. Для этого устанавливаются устройства регулировки температуры, а им необходимо удаленное электропитание. Тогда используется смешанный кабель , который наряду с оптическими волокнами содержит медные жилы. Для обеспечения норм по затуханию при передаче информации по оптическим кабелям применяются регенераторы и усилители сигналов.

При передаче одиночного оптического сигнала (см рис. 3.13 а) каждый регенератор преобразует оптический сигнал в электрический, корректирует временные параметры, выделяет передаваемую информацию и в результате управляет лазерным передатчиком для регенерации сигнала и преобразование оптического сигнала в электрический сигнал требует больших затрат, поскольку применяет очень дорогие компоненты (лазеры и сверхскоростную электронику).

imОптические системы передачи: а) с линейной регенерацией; б) DWDM составной сигнал с одним участком разделения по длине волны; в) DWDM составной сигнал с оптическим усилителем последовательного ввода информации в оптический кабель для передачи ее по следующему участку.

Схема, показанная на рис. 3.13 б, передает составной WDM -сигнал. При этом на каждом регенераторном участке производится разбиение составного сигнала на отдельные сигналы. Далее производится индивидуальное преобразование в электрическую форму и индивидуальная регенерация. Более предпочтительно применение оптических усилителей, которые могут усиливать сигнал на всех длинах волн, составляющих WDM -сигнал. Оптический усилитель на оптоволконе, легированном эрбием (Erbium-Doped Fiber Amplifier - EDFA ) - это отрезок оптоволокна типа EDFA и полупроводниковый лазерный диод в качестве источника "накачки". Усилитель принимает ослабленный сигнал и генерирует мощный сигнал в оптический кабель , легированный эрбием. От воздействия мощного сигнала атомы эрбия возбуждаются и генерируют фотоны в той же самой фазе и направлении, что и посылаемый сигнал. В результате получается эффект усиления. Такие усилители могут быть спроектированы на все диапазоны длин волн. Применение усилителей снижает потребность в применении регенераторов, как это показано на рис. 3.13 б. При этом имеется ограничение на количество последовательно устанавливаемых усилителей. Тем не менее установка усилителей позволяет увеличить расстояние между регенераторами и связанное с ними преобразование оптика-электроника до сотен и тысяч километров.

Краткие итоги

  • Передача информации по волоконно-оптическому кабелю имеет целый ряд достоинств перед передачей по медному кабелю: широкая полоса пропускания, малое затухание светового сигнала в волокне, низкий уровень шумов, защищенность от электромагнитных помех, малый вес и объем, высокая безопасность от несанкционированного доступа, гальваническая развязка элементов сети, пожаробезопасность, уменьшение требований к линейно-кабельным сооружениям, экономичность, длительный срок эксплуатации.
  • Оптоволоконный кабель содержит три основных элемента: оплетка, оболочка, сердцевина.
  • Сердцевина - волоконный светопроводящий элемент окружен оболочкой, которая имеет меньший показатель преломления света. Это приводит к тому, что большинство световых лучей в сердцевине отражаются внутрь сердцевины.
  • Максимальный угол, при котором для вводимого в волокно светового излучения обеспечивается полное внутреннее отражение, называется числовая апертура .
  • При построении сетей могут использоваться многожильные кабели.
  • Оптические волокна, в которых допускается прохождение лучей к приемнику многочисленными путями, называются многомодовыми.
  • Запаздывающие лучи приводят к расширению передаваемых импульсов. Это явление называется дисперсией. Величина этого расширения прямо пропорциональна ширине импульса и обратно пропорциональна скорости передачи.
  • Пропускная способность оптического кабеля, которая характеризуется коэффициентом широкополосности (BDF - Bandwidth Distance Factor).
  • Волокна, у которых на границе "оболочка-сердцевина" происходит скачок коэффициента преломления, называются волокнами со ступенчатым показателем преломления.
  • Волокна с изменяющимся показателем преломления по указанному выше закону называется градиентными и имеют коэффициент широкополосности на два порядка больше, чем ступенчатые волокна.
  • Затухание измеряется в дБ/км и определяется потерями на поглощение или рассеяние излучения в оптическом волокне. Потери на поглощения зависят от прозрачности материала, из которого изготовлено волокно. Потери на рассеяние зависят от неоднородности преломления материала.
  • Хроматическая дисперсия возникает в том случае, если световой сигнал состоит из волн разных длин. Хроматическая дисперсия - один из механизмов лимитирующих полосу пропускания волоконно-оптических кабелей, ухудшающих распространение импульсов сигнала, который состоит из различных цветов проходящего света (некогерентность сигнала).
  • Хроматическая дисперсия состоит из материальной и волноводной составляющих и происходит при распространении как в одномодовом, так и в многомодовом волокне.
  • Материальная составляющая отражает свойства зависимости показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит характеристика материала, а именно - зависимости показателя от длины волны. Эта составляющая определяется скоростью (дифференциалом) возрастания или уменьшения показателя преломления в зависимости от длины волны. С увеличением длины волны этот показатель может быть положительным, (коэффициент преломления возрастает) или отрицательным (коэффициент преломления убывает).
  • Волновая дисперсия определяется временем распространения сигнала в зависимости от длины волны. Она всегда положительная (время распространения с увеличением длины волны только возрастает).
  • При определенной длине волны (примерно для ступенчатого одномодового волокна) происходит взаимная компенсация материальной и волновой дисперсий, а результирующая дисперсия обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии . Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться для данного конкретного волокна.
  • Установлено, что при определенной форме сигнала он имеет наименьшую дисперсию. Такие импульсы называются солитонами .
  • Имеется два типа приборов, преобразующих электрический сигнал в световой - это светодиоды и лазерные диоды. Светодиоды (LED- Light-Emitting Diode ) генерируют некогерентное излучение (сигнал содержит составляющие из нескольких длин волн). Принцип излучения светодиодов позволяет модуляцию только по интенсивности излучения. Мощность излучения светодиодов может достигать нескольких десятков мкВт.
  • Лазерный диод обеспечивает когерентное излучение. Его луч обладает более узким спектром, по сравнению со светодиодом. Принцип излучение лазерных диодов позволяет использовать модуляцию по параметрам световой волны, например частотную.
  • Лазерные диоды отличаются более сложной конструкцией и большими электрическими нагрузками по сравнению со светодиодами, но они уступают последним в надежности, удобстве эксплуатации и стоимости.
  • В обычных фотодиодах формируется ток, зависящий от интенсивности падающего излучения, их отличают хорошая линейность и стабильность работы, малое время отклика, но они не обеспечивают усиление фототока.
  • Фототранзисторы имеют высокую чувствительность и хорошее усиление, но из-за большой барьерной емкости время отклика у них большое, то есть частотные характеристики хуже, чем у диодов.
  • p-i-n обладают большей чувствительностью, чем светодиоды. Их барьерная емкость мала, за счет чего обеспечиваются хорошие частотные характеристики (граничная частота - до 1 ГГц).
  • Лавинные диоды характеризуются высокой чувствительностью, большим усилением и высоким быстродействием, однако, их использование затруднено сложностью, высокой стоимостью, высокими рабочими напряжениями, необходимостью стабилизации напряжений и температур и работой только в режиме усиления слабого сигнала.
  • Одними из критических мест волоконных систем являются сращивание волокон и разъемы. Потеря света в соединителе составляет 10-20%. Для сравнения: сварка волокон приводит к потерям не более 1-2%.
  • Кросс, предназначенный для оптического кабеля, относится к кроссам высокой плотности, т.е. количество подключаемых пар на единицу площади превышает предыдущие системы (например, цифровые системы уплотнения).
  • Волновое мультиплексирование (Wave Division Multiplexing -

Без сомнения, оптоволоконная технология станет в будущем главным средством передачи информации. Она является одной из причин массового роста международных телекоммуникаций и эффекта "сжатия планеты". На основе этой технологии Интернет смог стать тем неоценимым информационным средством, каким он сегодня является. Однако вопреки распространенному мнению, это не панацея. У оптоволоконных систем все еще есть множество ограничений и препятствий, которые надо преодолеть. Перед тем как начать обсуждать теорию оптоволоконной передачи, сравним традиционные и оптоволоконные кабели и оценим их достоинства и недостатки.

1.2.1. Полоса пропускания

Оптоволокно

Сегодня у оптоволоконных кабелей огромная полоса пропускания со скоростями передачи до 40 Гбит/с, действующими уже сегодня, и свыше 100 Гбит/с, ожидающимися в ближайшем будущем. Факторами, ограничивающими рост скоростей передачи, в настоящее время являются: во-первых, большое по сравнению с периодами импульсов время ответа источников и детекторов для высоких скоростей передачи данных; во-вторых, близость длины волны света к периоду импульса, вызывающая проблемы дифференцирования в детекторах. Методы мультиплексирования нескольких длин волн в одном волокне (называемые спектральным уплотнением (WDM, wave division multiplexing) увеличивают общую скорость передачи по одному волокну до нескольких Тбит/с.

Следующее сравнение позволит почувствовать, что это означает в терминах передачи информации: при оптоволоконной связи на скорости примерно 1 Гбит/с можно одновременно передавать свыше 30 ООО сжатых телефонных разговоров. При связи на скорости 30 Гбит/с можно одновременно передавать до 1 миллиона телефонных разговоров по единственному стеклянному волокну!

Кабели

Коаксиальные кабели диаметром до 8 см могут обеспечить скорости передачи до 1 Гбит/с на расстояниях до 10 км. Ограничивающим фактором является очень высокая стоимость меди.

В настоящее время продолжается важное исследование по увеличению скорости передачи через кабели с витыми парами. Сегодня во многих локальных сетях скорости 100 Мбит/с являются вполне обычными. Доступны также коммерческие системы, действующие на скоростях до 1 Гбит/с. После успешных лабораторных испытаний на скоростях 10 Гбит/с соответствующая продукция готовится к коммерческому выпуску. Причина такой активной деятельности в этой области кроется в избытке инфраструктуры с уже, установленными кабелями с витой парой, что позволяет значительно сэкономить на рытье траншей, прокладке каналов и укладке новых оптоволоконных кабелей. По этой причине технология кабелей с витой парой в настоящее время успешно конкурирует с оптоволоконной технологией, поскольку обе они имеют множество общих приложений.

1.2.2. Помехи

Оптоволокно

На оптоволоконные кабели совершенно не воздействуют электромагнитные помехи (EMI), радиочастотные помехи (RFI), молнии и скачки высокого напряжения. Они не страдают от проблем емкостных или индуктивных сопряжений. При правильном проектировании на оптоволоконные кабели не должны воздействовать электромагнитные импульсы от ядерных взрывов и фоновой радиации. (Это известие утешит большую часть населения после ядерной войны!)

В дополнение к этому факту оптоволоконные кабели не создают никаких электромагнитных или радиочастотных помех. Это свойство очень ценно для производства вычислений, обработки видео- и аудиоинформации, где все более важным для возросшего качества воспроизведения и записи становится окружение с низким шумом.

Кабели

На обычные кабели влияют внешние помехи. В зависимости от типов кабелей и степеней их экранирования, они в разной степени подвержены электромагнитным и радиопомехам через индуктивные, емкостные и резистивные связи. Системы связи на основе традиционных кабелей полностью выходят из строя под действием электромагнитных импульсов ядерных взрывов.

Обычные кабели также излучают электромагнитные волны, что может вызвать помехи в других кабельных системах связи. Объем излучения зависит от величины передаваемого сигнала и качества экрана.

1.2.5. Электроизоляция

Оптоволокно

Оптоволоконные кабели обеспечивают полную гальваническую развязку между обоими концами кабеля. Непроводимость волокон делает кабели нечувствительными к скачкам напряжения. Это устраняет электромагнитные и эфирные помехи, которые могут быть вызваны контурами заземления, синфазными напряжениями, а также смещениями и короткими замыканиями потенциала земли. Оптоволоконный кабель действует как длинный изолятор. Поскольку оптические волокна не излучают волны и не подвержены помехам, еще одним их преимуществом является отсутствие взаимного влияния кабелей (то есть воздействия излучения одного кабеля связи на другой, проложенный рядом с ним).

Кабели

Традиционные кабели, просто работая по своему предназначению, предоставляют электрическое соединение между своими концами. Следовательно, они восприимчивы к электромагнитным и эфирным помехам от контуров заземления, синфазных напряжений и смещений потенциала земли. Они также подвержены проблемам взаимного влияния.

1.2.4. Расстояния передачи

Оптоволокно

Для простых дешевых оптоволоконных систем возможны расстояния между повторителями до 5 км. Для высококачественных коммерческих систем теперь без труда доступны расстояния между "повторителями до 300 км. Были разработаны системы (без использования повторителей) на расстояния до 400 км. В лабораторных условиях достигнуты расстояния, близкие к 1000 км, но на рынке они пока недоступны. Одна европейская компания заявила, что в настоящее время разрабатывает оптоволоконный кабель, который можно проложить вдоль земного экватора и без всяких повторителей по нему можно будет передавать4сигнал с одного его конца на другой! Как такое возможно? При использовании слегка радиоактивной оболочки входящие фотоны с низкой энергией возбуждают в этой оболочке электроны, которые, в свою очередь, излучают фотоны с большей энергией. Таким образом возникает некоторая форма автоусиления. В следующих главах читателю будут разъяснены использованные термины.

Кабели

На рынке кабелей с витой парой на скорости передачи 4 Мбит/с доступны расстояния между повторителями до 2,4 км. В случае коаксиальных кабелей на скоростях менее 1 Мбит/с между повторителями возможны расстояния до 25 км.

1.2.5. Размер и вес

Оптоволокно

По сравнению со всеми другими кабелями для передачи жданных, оптоволоконные кабели очень малы в диаметре и чрезвычайно легки. Четырехжильный оптоволоконный кабель весит примерно 240 кг/км, а 36-основный оптоволоконный кабель весит примерно лишь на 3 кг больше. Из-за своих небольших по сравнению с традиционными кабелями с такой же пропускной способностью размеров их обычно проще устанавливать в существующих условиях, а время установки и стоимость в общем ниже, поскольку они легки и с ними проще работать.

Кабели

Традиционный кабель может весить от 800 кг/км для кабеля с 36 витыми парами до 5 т/км для высококачественного коаксиального кабеля большого диаметра.

5.2 РАЗНИЦА ВО ВРЕМЕНИ ПРОБЕГА ОГРАНИЧИВАЕТ

ПРОПУСКНУЮ СПОСОБНОСТЬ ЛИНИИ СВЯЗИ

Упомянутые в § 4.1 оптимистичные прогнозы об огромной пропускной способности оптических кабелей, связи исходят из соображения, что ширина полосы передаваемого сигнала всегда должна быть несколько меньше, чем сама несущая частота.

Пропускная способность стеклянного волокна не безгранична.

Чтобы передать телефонный разговор как последовательность импульсов, необходимо передать большое число (конкретно 64 000) двоичных знаков в секунду (64 000 бит/с или 64 кбит/с). Чтобы преобразовать непрерывно изменяющийся ток микрофона в двоичный сигнал, его необходимо прежде всего воспроизвести с помощью импульсов. Найденные значения амплитуды теперь будут изображаться двоичным числом и посылаться как двоичные сигналы между двумя посылками импульсов. Со стороны приемника следует такое же обратное преобразование. Чтобы передать сигнал с более высоким качеством, необходимо различать по меньшей мере 256 амплитудных значений микрофонного тока. Поэтому требуется восьмикодовая система (8 двоичных знаков на кодовое слово) для каждого значения импульсной посылки. Для передачи одного движущегося телевизионного изображения требуется скорость передачи 80 млн. бит в секунду (80 Мбит/с).

В качестве пропускной способности линии - все равно из меди или стекла - принимается наибольшая скорость передачи сигнала через эту линию, измеренная в битах в секунду (бит - двоичная цифра).

Единица двоичной информации может быть приблизительно пересчитана в соответствующую ширину полосы частот, как обычно делается в аналоговой передающей технике для обозначения характеристики сигналов или кабелей. Так как для передачи информации со скоростью 2 бит/с теоретически требуется ширина полосы по крайней мере 1 Гц (практически около 1,6 Гц), можно приблизительно определить скорость передачи сигнала или пропускную способность в битах в секунду и соответствующую ей ширину полосы пропускания в герцах.

Возьмем для примера двоичный закодированный телефонный сигнал. Каждый единичный сигнал этой последовательности (единичный импульс тока или света) должен быть не длиннее, чем 1/64000 с, чтобы не мешать следующим сигналам. Пропускная способность линии принципиально тем выше, чем короче импульсы можно по ней передать.

Точно так же существуют границы и для световода. Принцип его действия ранее упоминался: свет распространяется зигзагообразно в светопроводящем сердечнике благодаря полному внутреннему отражению от стенок, к внешней стороне которых примыкает среда с малым коэффициентом преломления - оболочка. Это полное отражение связано с одним условием. Угол между световым лучом и оптической осью световода должен быть не более предельного угла полного внутреннего отражения . Он определяется отношением показателей преломления в сердечнике , и в оболочке :

Можно было бы отдать предпочтение волокну с большим различием показателей преломления, так как оно, очевидно, может воспринять и передать больше света от источника с большим углом излучения. Это преимущество было бы действительно решающим, если бы требования стояли только в возможно более высокой пропускной способности световода.

5.3 ПРОПУСКНАЯ СПОСОБНОСТЬ ВОЛОКОННЫХ СВЕТОВОДОВ

В одномодовых (мономодовых) и многомодовых световодах разная (в одномодовых больше из-за их толщины стержня). Вызванный различной длиной пробега в световоде временной разброс элементов выходного сигнала и как следствие рассеяние части энергии на выходе световода называют модовой дисперсией. К сожалению, она является не единственной причиной ограничения пропускной способности. Необходимо еще добавить так называемую материальную дисперсию. Она состоит в том, что показатель преломления стержня световода зависит от длины волны. Длинноволновые красные лучи отклоняются меньше, чем коротковолновые синие. Этот эффект не имел бы значения для техники световой связи, если бы применяемые источники излучали свет только одной длины волны. К сожалению, этого не бывает. Хотя ширина спектра полупроводникового лазера относительно узка, он излучает свет в некотором интервале длин волн шириной несколько нанометров. Светоизлучающий диод в этом отношении значительно превосходит его - приблизительно на 30 - 40 нм. Ограничение этой полосы невозможно без потери энергии. Именно эти различные спектральные составляющие излучения проходят через световод с различной скоростью
, что, конечно, приводит к уширению импульса и ограничивает пропускную способность световода.

В волокне со ступенчатым профилем показателя преломления преобладает модовая дисперсия вследствие большой разницы времен пробега между осевым и граничными лучами. В градиентном световоде с оптимальным профилем показателя преломления обе дисперсии становятся приблизительно одинаковыми. Напротив, в мономодовом волокне модовая дисперсия не имеет значения и только материальная дисперсия определяет характеристику передачи.

И третий фактор, влияющий на качество передачи - волноводная дисперсия . Она возникает только в мономодовых световодах, а именно потому, что единственная способная к распространению мода имеет скорость распространения, зависящую от длины волны.

Анализ причин и влияния материальной дисперсии на характеристики передачи позволили сделать выводы, которые представляют исключительный интерес для практики и оказывают решающее влияние на дальнейшее развитие световодной техники. Прежде всего выяснилось, что уширение импульса, вызванное материальной дисперсией, в значительной степени определяется микроструктурой зависимости показателя преломления данного светопроводящего материала от длины волны. Если на графике такой зависимости имеется участок, на котором кривая стремится к нулю, то на этой длине волны можно ожидать минимального уширения импульса и пренебречь влиянием материальной дисперсии.

Действительно, на кривых профиля показателя преломления можно найти такую точку, например, для кварцевого стекла при
. Это означает, что если среди узкополосных источников света имеются такие, для которых материальная дисперсия равна нулю, то соответственно пропускная способность принимает максимальное значение.

Исходя из значений материальной дисперсии можно рассчитать для различных длин волн уширение импульса и из этого затем скорость передачи для лазера (спектральная ширина около 2 нм) и для светоизлучающего диода (спектральная ширина около 40 нм). Даже для светоизлучающего диода в этой области длин волн можно ожидать скорости передачи свыше 1 Гбит/с на 1 км. Для лазеров экспериментально было получено значение 1,4 Гбит/с на 1 км! Понятно, что эта область длин волн нулевой дисперсии световода представляет большой интерес.

Только что названные характеристики передачи реальны и указывают на технические возможности, которые, имеются в простых многомодовых световодах и сегодня еще не исчерпаны. Нельзя забывать, однако, что столь высоких значений скорости передачи можно достигнуть только путем обеспечения оптимальных параметров светоизлучающего диода для определенной длины волны, которые для других длин волн создают худшие условия передачи. Кроме того, требуется соблюдение очень малых, допусков при изготовлении световода для обеспечения требуемого профиля показателя преломления, что несомненно удорожает световод.

Интересны и важны также изложенные выше соображения о том, что в любом случае не может быть создан световод с максимальной пропускной способностью. Для большинства областей пропускная способность применения световода достаточна. При этом оказывается возможным применить более простые электрические соединители и получить больший КПД при соединении и т. д.

5.4 ОПТИЧЕСКИЕ КАБЕЛИ, ИХ КОНСТРУКЦИИ И СВОЙСТВА

Одиночная двухпроводная цепь, одиночная коаксиальная пара являются в электрической технике связи редким явлением. Как правило, электрический кабель состоит из нескольких пар. Общая броня защищает их от окружающего влияния различного рода - повреждения грызунами, влажности и механических воздействий.

Световод, так же как и электрический проводник, помимо применения в качестве одиночного проводника света включается в состав оптического кабеля, и к нему предъявляются требования, аналогичные требованиям, предъявляемым к электрическим кабелям.

Однако электрические проводники и световоды настолько сильно различаются, что было бы удивительно, если бы электрические и оптические кабели не отличались между собой по конструкции, способам монтажа, прокладки и эксплуатации. Вместе с тем имеется многолетний опыт механической защиты тонких проводников (медные провода толщиной в десятые доли миллиметра используются достаточно широко), который может быть использован для защиты чувствительных стеклянных волокон.

Когда речь идет о различии между световодами и медными проводниками, необходимо назвать основное свойство, которое до сих пор вообще еще не называлось: абсолютная нечувствительность световода по отношению к помехам от электрического и магнитного полей . Здесь можно было бы сказать, что экранирование электрических кабелей для защиты их от внешних электромагнитных помех абсолютно излишне в оптических кабелях.

Основную роль играет, конечно, сам материал - стекло, которое выступает теперь в качестве заменителя ценного цветного металла - меди. Этот материал-заменитель обусловливает большой экономический выигрыш. Запасы меди в мире постоянно истощаются, а цены растут. По некоторым прогнозам еще на исходе столетия месторождения на суше, известные сегодня, будут исчерпаны. Основной материал для стеклянных оптических волокон - кварцевый песок - имеется в больших количествах. В технике связи несколько килограммов меди могут быть заменены 1 г стекла высокой очистки, если за основу принять одинаковую пропускную способность кабеля.

Из этого соотношения следует еще одно преимущество: оптические кабели легче электрических. Это особенно заметно в кабелях с высокой пропускной способностью - из-за малого диаметра световода. Ясно, что оба эти свойства являются, непосредственным преимуществом во многих областях применения.

Наконец, необходимо указать на фактор гальванической развязки передатчика и приемника. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют силу.

Наряду с этими полезными параметрами необходимо конечно, назвать другие, по которым оптические волокна уступают меди и которые должен учитывать конструктор кабелей.

Это прежде всего чувствительность незащищенного волокна к водяному пару . Это критическое свойство было очень скоро обнаружено, но было также обнаружено и противодействие ему: непосредственное покрытие световода защитной пленкой толщиной несколько микронметров непосредственно в процессе вытягивания волокна.

Эта защитная оболочка, в основном состоящая из полимера, полностью защищает световод. Она повышает также механическую прочность световода и его упругость. Кроме того, обеспечивается постоянство параметров при неблагоприятных окружающих условиях; без защитной оболочки они снижаются уже через несколько часов или дней.

Механический предел прочности при разрыве для волокна довольно высок и соответствует прочности стали. Однако стекло хрупко, изгибы с малым радиусом волокно не выдерживает и ломается. Но и этот недостаток относителен: стекловолокно, снабженное упомянутым тонким защитным слоем, вполне можно обмотать вокруг пальца, а некоторые сорта – даже вокруг тонкого карандаша. Учитывая это типичное свойство стекла, необходимо, конечно, принимать меры защиты в тех случаях, когда несколько световодов объединяются в одном кабеле, который в дальнейшем будет изгибаться и скручиваться. Это случается при намотке на барабан и при укладке. Конструкция кабеля должна быть такой, чтобы устранить механические перегрузки световода. Но опасны не только разрушение волокна, но и микроизгибы. Они возникают, когда светопроводящие волокна лежат на шероховатой поверхности в условиях приложения растягивающей силы, и могут вызывать дополнительные световые потери. Это явление можно наблюдать в демонстрационном опыте, когда к светопроводящему волокну, туго, виток к витку намотанному на барабан, подводится видимый свет, например от He-Ne лазера. Весь барабан при этом излучает яркий красный свет, что указывает на световые потери, вызванные микроизгибами.

Чтобы уменьшить механические нагрузки на волокна, был опробован ряд решений. Отдельные проводники свободно укладываются в поперечном сечении кабеля; в процессе изготовления кабеля следят за тем, чтобы волокна были несколько длиннее, чем кабель. На рисунке показана повивно-концентрическая конструкция, она применяется очень часто. При этом световоды лежат свободно в тонких гибких трубках или на них накладывается пористая изоляция.

При колебаниях окружающей температуры от конструкции кабеля существенно зависят механические силы, которые действуют на световод. Единственным слабым местом, кажется, является оболочка волокон со ступенчатым показателем преломления. Ее показатель преломления, который лишь ненамного меньше показателя преломления сердечника, может в неблагоприятных случаях увеличиться при низких температурах, чем будут нарушены условия полного внутреннего отражения и соответственно появятся дополнительные потери на излучение.

Оптических волокон ... эксплуатации волоконно -оптических линий связи на воздушных линиях электропередачи...

  • Постановка лабораторной работы по курсу волоконно -оптические системы связи

    Реферат >> Промышленность, производство

    И.И.. Волоконно -оптические линии связи . -М.: Радио и связь , 1990 –224с. М.М. Бутусов, С.М. Верник, С.Л. Балкин и другие. Волоконно -оптические системы передачи. -М.: Радио и связь ...

  • Волоконно -оптические датчики

    Реферат >> Коммуникации и связь

    Информации. Имеются так называемые когерентные волоконно -оптические линии связи , где пригодны только одномодовые... в когерентных линиях связи непрактично, что и предопределило применение в подобных линиях только одномодовых оптических волокон . Напротив, ...

  • Модернизация зоновой сети Самарской области на базе волоконно -оптический линий передач

    Дипломная работа >> Коммуникации и связь

    В.И. Иванова. – М.: Радио и Связь , 1994. – 224 с. Строительство и техническая эксплуатация волоконно -оптических линий связи / В.А. Андреев, В.А. Бурдин, Б.В. Попов...